3,592 research outputs found

    Prediction of dynamic pairwise wake vortex separations for approach and landing

    Get PDF
    Design and performance of the Wake Vortex Prediction and Monitoring System WSVBS are described. The WSVBS has been developed to tactically increase airport capacity for approach and landing on single runways as well as closely-spaced parallel runways. It is thought to dynamically adjust aircraft separations dependent on weather conditions and the resulting wake vortex behavior without compro-mis>ing safety. Dedicated meteorological instrumentation and short-term numerical terminal weather prediction provide the input to the prediction of wake-vortex behavior and respective safety areas. LIDAR monitors the correctness of WSVBS predictions in the most critical gates at low altitude. The WSVBS is integrated in the arrival manager AMAN of DLR. Performance tests of the WSVBS have been accomplished at Frankfurt airport in winter 2006/07 and at Munich Airport in summer 2010. Aircraft separations for landings on single runways have been compared employing the concepts of either heavy-medium weight class combinations or dynamic pairwise separations where individual aircraft type pairings are considered. For the very conservative baseline setup of the WSVBS the potential capacity gains of dynamic pairwise operations for single runways appear to be very small. On the other hand, the consideration of individual aircraft types and their respective wake characteristics may almost double the fraction of time when radar separation could be applied

    Synapse Dysfunctions in Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS

    Model Validation and Simulation

    Get PDF
    The Bauhaus Summer School series provides an international forum for an exchange of methods and skills related to the interaction between different disciplines of modern engineering science. The 2012 civil engineering course was held in August over two weeks at Bauhaus-UniversitÀt Weimar. The overall aim was the exchange of research and modern scientific approaches in the field of model validation and simulation between well-known experts acting as lecturers and active students. Besides these educational intentions the social and cultural component of the meeting has been in the focus. 48 graduate and doctoral students from 20 different countries and 22 lecturers from 12 countries attended this summer school. Among other aspects, this activity can be considered successful as it raised the sensitivity towards both the significance of research in civil engineering and the role of intercultural exchange. This volume summarizes and publishes some of the results: abstracts of key note papers presented by the experts and selected student research works. The overview reflects the quality of this summer school. Furthermore the individual contributions confirm that for active students this event has been a research forum and a special opportunity to learn from the experiences of the researchers in terms of methodology and strategies for research implementation in their current work

    Preparing projected entangled pair states on a quantum computer

    Get PDF
    We present a quantum algorithm to prepare injective PEPS on a quantum computer, a class of open tensor networks representing quantum states. The run-time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS' parent Hamiltonian.Comment: 5 pages, 1 figure. To be published in Physical Review Letters. Removed heuristics, refined run-time boun

    Emergence of an incipient ordering mode in FeSe

    Full text link
    The structurally simplest Fe-based superconductor FeSe with a critical temperature Tc≈T_{c}\approx 8.5 K displays a breaking of the four-fold rotational symmetry at a temperature Ts≈87T_{s}\approx 87 K. We investigated the electronic properties of FeSe using scanning tunneling microscopy/spectroscopy (STM/S), magnetization, and electrical transport measurements. The results indicated two new energy scales (i) T∗≈T^{*} \approx 75 K denoted by an onset of electron-hole asymmetry in STS, enhanced spin fluctuations, and increased positive magnetoresistance; (ii) T∗∗≈T^{**} \approx 22 - 30 K, marked by opening up of a partial gap of about 8 meV in STS and a recovery of Kohler's rule. Our results reveal onset of an incipient ordering mode at T∗T^{*} and its nucleation below T∗∗T^{**}. The ordering mode observed here, both in spin as well as charge channels, suggests a coupling between the spins with charge, orbital or pocket degrees of freedom.Comment: 5 pages, 4 figure

    Improving the Efficiency of FP-LAPW Calculations

    Full text link
    The full-potential linearized augmented-plane wave (FP-LAPW) method is well known to enable most accurate calculations of the electronic structure and magnetic properties of crystals and surfaces. The implementation of atomic forces has greatly increased it's applicability, but it is still generally believed that FP-LAPW calculations require substantial higher computational effort compared to the pseudopotential plane wave (PPW) based methods. In the present paper we analyse the FP-LAPW method from a computational point of view. Starting from an existing implementation (WIEN95 code), we identified the time consuming parts and show how some of them can be formulated more efficiently. In this context also the hardware architecture plays a crucial role. The remaining computational effort is mainly determined by the setup and diagonalization of the Hamiltonian matrix. For the latter, two different iterative schemes are compared. The speed-up gained by these optimizations is compared to the runtime of the ``original'' version of the code, and the PPW approach. We expect that the strategies described here, can also be used to speed up other computer codes, where similar tasks must be performed.Comment: 20 pages, 3 figures. Appears in Comp. Phys. Com. Other related publications can be found at http://www.rz-berlin.mpg.de/th/paper.htm

    SUSY structures on deformed supermanifolds

    Full text link
    We construct a geometric structure on deformed supermanifolds as a certain subalgebra of the vector fields. In the classical limit we obtain a decoupling of the infinitesimal odd and even transformations, whereas in the semiclassical limit the result is a representation of the supersymmetry algebra. In the case of mass preserving structure we describe all high energy corrections to this algebra.Comment: 20 pages. v2 coincides with the version published in Differential Geometry and its Application
    • 

    corecore